Growth, Productivity, and Size Structure of Spirulina Strain Under Different Salinity Levels: Implications for Cultivation Optimization

Lead Researcher(s): Imma Krissalina and Brisneve Edullantes
Status: Published

Abstract/summary: Salinity serves as a critical environmental factor influencing the physiological and morphological characteristics of Spirulina, a filamentous cyanobacterium used for food production and commercial purposes. This study examined a Spirulina strain’s responses to different salinity levels (10–45 ppt) through three independent laboratory experiments that determined growth, productivity, and size structure. Growth across salinity treatments was assessed by monitoring optical density in 24-well microplates over 20 days and estimating specific growth rates using a logistic growth model. Primary productivity under different salinity and light conditions was measured using light and dark bottle experiments to calculate gross primary productivity (GPP) and to estimate photosynthetic efficiency through linear regression of GPP against light intensity. The size structure was assessed through tube-based experiments and image analysis, with organism sizes categorized and analyzed to identify salinity-induced patterns in filament structure. The study demonstrated that the Spirulina strain achieved its greatest growth at 10 ppt yet produced the highest photosynthetic efficiency between 27 and 45 ppt because it reallocated energy during salinity stress. The morphological analysis revealed that the Spirulina strain produced medium-sized filaments between 400 and 799 µm at elevated salinity levels, and our analysis confirmed substantial variations in size structure. The Spirulina strain demonstrates both physiological and morphological plasticity when exposed to salinity changes. The cultivation of the Spirulina strain at 27 ppt provides conditions that support moderate growth, enhanced productivity, and manageable morphological shifts while using its natural salinity tolerance to improve the efficiency and scalability of production for diverse biotechnological applications.

Keywords: